Phosphate and potash solubilizing bacteria from Moroccan phosphate mine showing antagonism to bacterial canker agent and inducing effective tomato growth promotion

Author:

Bouizgarne B.,Bakki M.,Boutasknit A.,Banane B.,El Ouarrat H.,Ait El Maalem S.,Amenzou A.,Ghousmi A.,Meddich A.

Abstract

Most agricultural soils are facing limited phosphorus availability that challenges modern agriculture. Phosphate solubilizing microbia (PSM) has been explored extensively as potential biofertilizers for plant growth and nutrition, and harnessing phosphate rich areas could provide such beneficial microorganisms. Isolation of PSM from Moroccan rock phosphate led to the selection of two bacterial isolates, Bg22c and Bg32c, showing high solubilization potential. The two isolates were also tested for other in vitro PGPR effects and compared to a non-phosphate solubilizing bacterium Bg15d. In addition to phosphates, Bg22c and Bg32c were able to solubilize insoluble potassium and zinc forms (P, K, and Zn solubilizers) and produce indole-acetic acid (IAA). Mechanisms of solubilization involved production of organic acids as demonstrated by HPLC. In vitro, the isolates Bg22c and Bg15d were able to antagonize the phytopathogenic bacteria Clavibacter michiganensis subsp. michiganensis, causal agent of tomato bacterial canker disease. Phenotypic and molecular identification by 16S rDNA sequencing demonstrated delineation of Bg32c and Bg15d as members of the genus Pseudomonas and Bg22c as member of the genus Serratia. The two isolates Bg22c and Bg32c were further tested either alone or in a consortium and compared to the non-P, K, and Zn solubilizing Pseudomonas strain Bg15d for their efficacy to promote tomato growth and yield. They were also compared to treatment with a conventional NPK fertilizer. Under greenhouse conditions, Pseudomonas strain Bg32c remarkably improved the growth of whole plant height, root length, shoot and root weight, number of leaves and fruits, as well as fruit fresh weight. This strain also induced stomatal conductance enhancement. The strain also improved total soluble phenolic compounds, total sugars, protein, phosphorus and phenolic compounds contents compared to the negative control. All increases were more pronounced in plants inoculated with strain Bg32c in comparison with control and strain Bg15d. The strain Bg32c could be considered a potential candidate for formulation of a biofertilizer in order to improve tomato growth.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3