The Spectral Irradiance, Growth, Photosynthetic Characteristics, Antioxidant System, and Nutritional Status of Green Onion (Allium fistulosum L.) Grown Under Different Photo-Selective Nets

Author:

Gao Song,Liu Xuena,Liu Ying,Cao Bili,Chen Zijing,Xu Kun

Abstract

The active regulation of the plant growth environment is a common method for optimizing plant yield and quality. In horticulture today, light quality control is carried out using photo-selective nets or membranes to improve the yield and quality of cultivated plants. In the present study, with natural light as the control (CK), we tested different photo-selective nets (white, WN; blue, BN; green, GN; yellow, YN; and red, RN) with 30% shade for characteristics of growth, development, quality, yield, photosynthesis, and chlorophyll fluorescence, considering the antioxidant system, as well as the influence of element absorption and transformation of green onion (Allium fistulosum L.) plants at different growth stages. We found that plants under BN and WN have greater height and fresh weight than those of plants under the other nets. Plants under the BN treatment had the highest quality, yield, photosynthetic pigment content, net photosynthetic rate, transpiration rate, and stomatal conductance, whereas the intercellular CO2 concentration was the highest in plants in the YN treatment. The photosynthesis noon break phenomenon was significantly lower in plants with covered photo-selective nets than in CK plants. NPQ was the highest in the YN treatment, and Fv/Fm, ΦPSII, and qP among the plants in the other treatments were different; from highest to lowest, they were as follows: BN > WN > CK > RN > GN > YN. The active oxygen content of green onion leaves in the BN treatment was significantly lower than that in the other treatments, and their key enzyme activity was significantly increased. BN also improved the absorption and transformation of elements in various organs of green onion.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3