High Leaf Vein Density Promotes Leaf Gas Exchange by Enhancing Leaf Hydraulic Conductance in Oryza sativa L. Plants

Author:

Ye Miao,Wu Meng,Zhang Hao,Zhang Zuolin,Zhang Zujian

Abstract

Six cultivated rice genotypes showing different stomatal conductance (gs) values were used to investigate the influence of leaf vein traits on leaf gas exchange and leaf hydraulics. The results showed that gs was the main determinant of the varietal difference in the net photosynthetic rate (PN), whereas the area-based leaf nitrogen content (Narea) and mesophyll conductance (gm) were not main factors. gs and PN were both positively correlated with leaf hydraulic conductance (Kleaf). A high density of leaf veins (vein length per leaf area, VLA), especially minor leaf veins (VLAminor), was of benefit for improving the Kleaf. The proportion of the minor leaf vein length to the total leaf vein length did not impact the leaf hydraulics or leaf gas exchange. Overall, these findings suggested that a high density of leaf veins, especially minor leaf veins, enhances Kleaf and promotes gs and PN in cultivated rice genotypes and a high VLA can be regarded as a high photosynthetic capacity trait in rice plants.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3