The Detection Method of Potato Foliage Diseases in Complex Background Based on Instance Segmentation and Semantic Segmentation

Author:

Li Xudong,Zhou Yuhong,Liu Jingyan,Wang Linbai,Zhang Jun,Fan Xiaofei

Abstract

Potato early blight and late blight are devastating diseases that affect potato planting and production. Thus, precise diagnosis of the diseases is critical in treatment application and management of potato farm. However, traditional computer vision technology and pattern recognition methods have certain limitations in the detection of crop diseases. In recent years, the development of deep learning technology and convolutional neural networks has provided new solutions for the rapid and accurate detection of crop diseases. In this study, an integrated framework that combines instance segmentation model, classification model, and semantic segmentation model was devised to realize the segmentation and detection of potato foliage diseases in complex backgrounds. In the first stage, Mask R-CNN was adopted to segment potato leaves in complex backgrounds. In the second stage, VGG16, ResNet50, and InceptionV3 classification models were employed to classify potato leaves. In the third stage, UNet, PSPNet, and DeepLabV3+ semantic segmentation models were applied to divide potato leaves. Finally, the three-stage models were combined to segment and detect the potato leaf diseases. According to the experimental results, the average precision (AP) obtained by the Mask R-CNN network in the first stage was 81.87%, and the precision was 97.13%. At the same time, the accuracy of the classification model in the second stage was 95.33%. The mean intersection over union (MIoU) of the semantic segmentation model in the third stage was 89.91%, and the mean pixel accuracy (MPA) was 94.24%. In short, it not only provides a new model framework for the identification and detection of potato foliage diseases in natural environment, but also lays a theoretical basis for potato disease assessment and classification.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference28 articles.

1. “Tomato plant diseases detection system using image processing,”;Adhikari,2018

2. Deep learning for tomato diseases: classification and symptoms visualization;Brahimi;Appl. Artif. Intell,2017

3. Semantic image segmentation with deep convolutional nets and fully connected CRFs. Comput;Chen,2014

4. Pest identification via deep residual learning in complex background;Cheng;Comput. Electron. Agric,2017

5. Comparative epidemiology of late blight and early blight of potato under different environmental conditions and fungicide application programs;Da Silva Silveira Duarte;Semin. Agrar,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3