Research on Polygon Pest-Infected Leaf Region Detection Based on YOLOv8

Author:

Zhu Ruixue12ORCID,Hao Fengqi123ORCID,Ma Dexin4ORCID

Affiliation:

1. Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

2. Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan 250014, China

3. Faculty of Data Science, City University of Macau, Macau 999078, China

4. Communication College, Qingdao Agricultural University, Qingdao 266109, China

Abstract

Object detection in deep learning provides a viable solution for detecting crop-pest-infected regions. However, existing rectangle-based object detection methods are insufficient to accurately detect the shape of pest-infected regions. In addition, the method based on instance segmentation has a weak ability to detect the pest-infected regions at the edge of the leaves, resulting in unsatisfactory detection results. To solve these problems, we constructed a new polygon annotation dataset called PolyCorn, designed specifically for detecting corn leaf pest-infected regions. This was made to address the scarcity of polygon object detection datasets. Building upon this, we proposed a novel object detection model named Poly-YOLOv8, which can accurately and efficiently detect corn leaf pest-infected regions. Furthermore, we designed a loss calculation algorithm that is insensitive to ordering, thereby enhancing the robustness of the model. Simultaneously, we introduced a loss scaling factor based on the perimeter of the polygon, improving the detection ability for small objects. We constructed comparative experiments, and the results demonstrate that Poly-YOLOv8 outperformed other models in detecting irregularly shaped pest-infected regions, achieving 67.26% in mean average precision under 0.5 threshold (mAP50) and 128.5 in frames per second (FPS).

Funder

Innovation Capability Improvement Project for Small and Medium-Sized Scientific and Technological Enterprises in Shandong Province

Major Technological Innovation Project of Shandong Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3