A microencapsulation approach to design microbial seed coatings to boost wheat seed germination and seedling growth under salt stress

Author:

Gong Min,He Jiuxing,Kong Meng,Huo Qiuyan,Jiang Yawen,Song Jiqing,Han Wei,Lv Guohua

Abstract

IntroductionSalt stress in seed germination and early seedling growth is the greatest cause of crop loss in saline-alkali soils. Microbial seed coating is an effective way to promote plant growth and salt resistance, but these coatings suffer from poor seed adhesion and low survival rates under typical storage conditions.MethodsIn this study, the marine bacterium Pontibacter actiniarum DSM 19842 from kelp was isolated and microencapsulated with calcium alginate using the emulsion and internal gelation method.ResultsCompared to unencapsulated seeds, the spherical microcapsules demonstrated a bacterial encapsulation rate of 65.4% and survival rate increased by 22.4% at 25°C for 60 days. Under salt stress conditions, the seed germination percentage of microcapsule-embedded bacteria (M-Embed) was 90%, which was significantly increased by 17% compared to the germination percentage (73%) of no coating treatment (CK). Root growth was also significantly increased by coating with M-Embed. Chlorophyll, peroxidase, superoxide dismutase, catalase, proline, hydrogen peroxide and malondialdehyde levels indicated that the M-Embed had the best positive effects under salt stress conditions.DiscussionTherefore, embedding microorganisms in suitable capsule materials provides effective protection for the survival of the microorganism and this seed coating can alleviate salt stress in wheat. This process will benefit the development of sustainable agriculture in coastal regions with saline soils.

Funder

Agricultural Science and Technology Innovation Program

Key Technology Research and Development Program of Shandong Province

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3