Plant-DTI: Extending the landscape of TF protein and DNA interaction in plants by a machine learning-based approach

Author:

Ruengsrichaiya Bhukrit,Nukoolkit Chakarida,Kalapanulak Saowalak,Saithong Treenut

Abstract

As a sessile organism, plants hold elaborate transcriptional regulatory systems that allow them to adapt to variable surrounding environments. Current understanding of plant regulatory mechanisms is greatly constrained by limited knowledge of transcription factor (TF)–DNA interactions. To mitigate this problem, a Plant-DTI predictor (Plant DBD-TFBS Interaction) was developed here as the first machine-learning model that covered the largest experimental datasets of 30 plant TF families, including 7 plant-specific DNA binding domain (DBD) types, and their transcription factor binding sites (TFBSs). Plant-DTI introduced a novel TFBS feature construction, called TFBS base-preference, which enhanced the specificity of TFBS to DBD types. The proposed model showed better predictive performance with the TFBS base-preference than the simple binary representation. Plant-DTI was validated with 22 independent ChIP-seq datasets. It accurately predicted the measured DBD-TFBS pairs along with their TFBS motifs, and effectively predicted interactions of other TFs containing similar DBD types. Comparing to the existing state-of-art methods, Plant-DTI prediction showed a figure of merit in sensitivity and specificity with respect to the position weight matrix (PWM) and TSPTFBS methods. Finally, the proposed Plant-DTI model helped to fill the knowledge gap in the regulatory mechanisms of the cassava sucrose synthase 1 gene (MeSUS1). Plant-DTI predicted MeERF72 as a regulator of MeSUS1 in consistence with the yeast one-hybrid (Y1H) experiment. Taken together, Plant-DTI would help facilitate the prediction of TF-TFBS and TF-target gene (TG) interactions, thereby accelerating the study of transcriptional regulatory systems in plant species.

Funder

National Research Council of Thailand

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3