Distinguishing Abrupt and Gradual Forest Disturbances With MODIS-Based Phenological Anomaly Series

Author:

Gnilke Anne,Sanders Tanja G. M.

Abstract

Capturing forest disturbances over time is increasingly important to determine the ecosystem's capacity to recover as well as aiding a timely response of foresters. With changes due to climate change increasing the frequencies, a better understanding of forest disturbances and their role in historical development is needed to, on the one hand, develop forest management approaches promoting ecosystem resilience and, on the other hand, provide quick and spatially explicit information to foresters. A large, publicly available satellite imagery spanning more than two decades for large areas of the Earth's surface at varying spatial and temporal resolutions represents a vast, free data source for this. The challenge is 2-fold: (1) obtaining reliable information on forest condition and development from satellite data requires not only quantification of forest loss but rather a differentiated assessment of the extent and severity of forest degradation; (2) standardized and efficient processing routines both are needed to bridge the gap between remote-sensing signals and conventional forest condition parameters to enable forest managers for the operational use of the data. Here, we investigated abiotic and biotic disturbances based on a set of ground validated occurrences in various forest areas across Germany to build disturbance response chronologies and examine event-specific patterns. The proposed workflow is based on the R-package “npphen” for non-parametric vegetation phenology reconstruction and anomaly detection using MODIS EVI time series data. Results show the potential to detect distinct disturbance responses in forest ecosystems and reveal event-specific characteristics. Difficulties still exist for the determination of, e.g., scattered wind throw, due to its subpixel resolution, especially in highly fragmented landscapes and small forest patches. However, the demonstrated method shows potential for operational use as a semi-automatic system to augment terrestrial monitoring in the forestry sector. Combining the more robust EVI and the assessment of the phenological series at a pixel-by-pixel level allows for a changing species cover without false classification as forest loss.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference87 articles.

1. Ontologies to interpret remote sensing images: why do we need them?;Arvor;GIScience Remote Sens.,2019

2. The interaction of plant biotic and abiotic stresses: from genes to the field;Atkinson;J. Exp. Bot.,2012

3. AtzbergerC. ZeugG. DefournyP. AragãoL. HammarströmL. ImmitzerM. Forest-Study-final-Report-v10_final.docx2014

4. A review of vegetation indices;Bannari;Remote Sens. Rev.,1995

5. Forest monitoring using landsat time series data: a review;Banskota;Can. J. Remote Sens.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3