Earth-Observation-Based Monitoring of Forests in Germany—Recent Progress and Research Frontiers: A Review

Author:

Holzwarth Stefanie1ORCID,Thonfeld Frank1ORCID,Kacic Patrick2ORCID,Abdullahi Sahra1,Asam Sarah1ORCID,Coleman Kjirsten1,Eisfelder Christina1ORCID,Gessner Ursula1ORCID,Huth Juliane1ORCID,Kraus Tanja1,Shatto Christopher3ORCID,Wessel Birgit1ORCID,Kuenzer Claudia12

Affiliation:

1. German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Oberpfaffenhofen, 82234 Wessling, Germany

2. Working Group Earth Observation, Institute of Geography and Geology, University of Würzburg, 97074 Würzburg, Germany

3. Department of Biogeography, University of Bayreuth, 95447 Bayreuth, Germany

Abstract

One-third of Germany’s land surface area is covered by forest (around 11.4 million hectares), and thus, it characterizes the landscape. The forest is a habitat for a large number of animal and plant species, a source of raw materials, important for climate protection, and a well-being refuge for people, to name just a few of its many functions. During the annual forest condition surveys, the crown condition of German forests is assessed on the basis of field samples at fixed locations, as the crown condition of forest trees is considered an important indicator of their vitality. Since the start of the surveys in 1984, the mean crown defoliation of all tree species has increased, now averaging about 25% for all tree species. Additionally, it shows a strong rise in the rate of dieback. In 2019, the most significant changes were observed. Due to the drastic changes in recent years, efforts are being made to assess the situation of the forest using different remote sensing methods. There are now a number of freely available products provided to the public, and more will follow as a result of numerous projects in the context of earth-observation (EO)-based monitoring and mapping of the forests in Germany. In 2020, the situation regarding the use of remote sensing for the German forest was already investigated in more detail. However, these results no longer reflect the current situation. The changes of the last 3 years are the content of this publication. For this study, 84 citable research publications were thoroughly analyzed and compared with the situation in 2020. As a major result, we found a shift in the research focus towards disturbance monitoring and a tendency to cover larger areas, including national-scale studies. In addition to the review of the scientific literature, we also reviewed current research projects and related products. In congruence to the recent developments in terms of publications in scientific journals, these projects and products reflect the need for comprehensive, timely, large-area, and complementary EO-based information around forests expressed in multiple political programs. With this review, we provide an update of previous work and link it to current research activities. We conclude that there are still gaps between the information needs of forest managers who usually rely on information from field perspectives and the EO-based information products.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3