The Coevolution of RuBisCO, Photorespiration, and Carbon Concentrating Mechanisms in Higher Plants

Author:

Cummins Peter L.

Abstract

Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO) is the carbon-fixing enzyme present in most photosynthetic organisms, converting CO2 into organic matter. Globally, photosynthetic efficiency in terrestrial plants has become increasingly challenged in recent decades due to a rapid increase in atmospheric CO2 and associated changes toward warmer and dryer environments. Well adapted for these new climatic conditions, the C4 photosynthetic pathway utilizes carbon concentrating mechanisms to increase CO2 concentrations surrounding RuBisCO, suppressing photorespiration from the oxygenase catalyzed reaction with O2. The energy efficiency of C3 photosynthesis, from which the C4 pathway evolved, is thought to rely critically on an uninterrupted supply of chloroplast CO2. Part of the homeostatic mechanism that maintains this constancy of supply involves the CO2 produced as a byproduct of photorespiration in a negative feedback loop. Analyzing the database of RuBisCO kinetic parameters, we suggest that in genera (Flaveria and Panicum) for which both C3 and C4 examples are available, the C4 pathway evolved only from C3 ancestors possessing much lower than the average carboxylase specificity relative to that of the oxygenase reaction (SC/O=SC/SO), and hence, the higher CO2 levels required for development of the photorespiratory CO2 pump (C2 photosynthesis) essential in the initial stages of C4 evolution, while in the later stage (final optimization phase in the Flaveria model) increased CO2 turnover may have occurred, which would have been supported by the higher CO2 levels. Otherwise, C4 RuBisCO kinetic traits remain little changed from the ancestral C3 species. At the opposite end of the spectrum, C3 plants (from Limonium) with higher than average SC/O, which may be associated with the ability of increased CO2, relative to O2, affinity to offset reduced photorespiration and chloroplast CO2 levels, can tolerate high stress environments. It is suggested that, instead of inherently constrained by its kinetic mechanism, RuBisCO possesses the extensive kinetic plasticity necessary for adaptation to changes in photorespiration that occur in the homeostatic regulation of CO2 supply under a broad range of abiotic environmental conditions.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3