The diversity and coevolution of Rubisco and CO2 concentrating mechanisms in marine macrophytes

Author:

Capó‐Bauçà Sebastià1ORCID,Iñiguez Concepción12ORCID,Galmés Jeroni1ORCID

Affiliation:

1. Research Group on Plant Biology under Mediterranean Conditions Universitat de les Illes Balears‐INAGEA 07122 Palma Balearic Islands Spain

2. Department of Ecology, Faculty of Sciences University of Malaga Boulevard Louis Pasteur s/n 29010 Málaga Spain

Abstract

SummaryThe kinetic properties of Rubisco, the most important carbon‐fixing enzyme, have been assessed in a small fraction of the estimated existing biodiversity of photosynthetic organisms. Until recently, one of the most significant gaps of knowledge in Rubisco kinetics was marine macrophytes, an ecologically relevant group including brown (Ochrophyta), red (Rhodophyta) and green (Chlorophyta) macroalgae and seagrasses (Streptophyta). These organisms express various Rubisco types and predominantly possess CO2‐concentrating mechanisms (CCMs), which facilitate the use of bicarbonate for photosynthesis. Since bicarbonate is the most abundant form of dissolved inorganic carbon in seawater, CCMs allow marine macrophytes to overcome the slow gas diffusion and low CO2 availability in this environment. The present review aims to compile and integrate recent findings on the biochemical diversity of Rubisco and CCMs in the main groups of marine macrophytes. The Rubisco kinetic data provided demonstrate a more relaxed relationship among catalytic parameters than previously reported, uncovering a variability in Rubisco catalysis that has been hidden by a bias in the literature towards terrestrial vascular plants. The compiled data indicate the existence of convergent evolution between Rubisco and biophysical CCMs across the polyphyletic groups of marine macrophytes and suggest a potential role for oxygen in shaping such relationship.

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3