Salt-tolerant alternative crops as sources of quality food to mitigate the negative impact of salinity on agricultural production

Author:

Egea Isabel,Estrada Yanira,Faura Celia,Egea-Fernández José M.,Bolarin Maria C.,Flores Francisco B.

Abstract

An increase of abiotic stress tolerance and nutritive value of foods is currently a priority because of climate change and rising world population. Among abiotic stresses, salt stress is one of the main problems in agriculture. Mounting urbanization and industrialization, and increasing global food demand, are pressing farmers to make use of marginal lands affected by salinity and low-quality saline water. In that situation, one of the most promising approaches is searching for new sources of genetic variation like salt-tolerant alternative crops or underexploited crops. They are generally less efficient than cultivated crops in optimal conditions due to lower yield but represent an alternative in stressful growth conditions. In this review, we summarize the advances achieved in research on underexploited species differing in their genetic nature. First, we highlight advances in research on salt tolerance of traditional varieties of tomato or landraces; varieties selected and developed by smallholder farmers for adaptation to their local environments showing specific attractive fruit quality traits. We remark advances attained in screening a collection of tomato traditional varieties gathered in Spanish Southeast, a very productive region which environment is extremely stressing. Second, we explore the opportunities of exploiting the natural variation of halophytes, in particular quinoa and amaranth. The adaptation of both species in stressful growth conditions is becoming an increasingly important issue, especially for their cultivation in arid and semiarid areas prone to be affected by salinity. Here we present a project developed in Spanish Southeast, where quinoa and amaranth varieties are being adapted for their culture under abiotic stress targeting high quality grain.

Funder

Ministerio de Ciencia, Innovación y Universidades

Ministerio de Educación y Formación Profesional

Fundación Séneca

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3