The Effect of Salinity on Fruit Quality and Yield of Cherry Tomatoes

Author:

Agius CarlosORCID,von Tucher Sabine,Rozhon WilfriedORCID

Abstract

Hydroponic cultivation of vegetables avoids problems with soil-borne plant pathogens and may allow higher yield. In arid climates and particularly on islands, high concentrations of sodium chloride can be present in the groundwater. For instance, in many sites of Malta, the groundwater contains more than 10 mM sodium chloride. Here we investigated the effects of sodium chloride at levels typically found in Malta on yield, physiology and fruit quality of tomato, the economically most important vegetable. We selected cherry tomatoes since their production is attractive due to their high marketing value. While the yield declined at higher salinity levels tested (17 and 34 mM), the quality increased significantly as indicated by higher total soluble solids and fructose and glucose levels. The type of substrate—coco peat, perlite or Rockwool—had only minor effects. Although the concentration of citric acid and malic acid remained unaffected, the pH dropped by approximately 0.1 unit and the titratable acidity increased slightly. This might be explained by a high uptake of chloride but a lower increase of the sodium content and a reduced potassium level in the fruits, shifting the equilibrium of the organic acids more to their protonated forms. Proline increased significantly, while the level of glutamic acid, which is crucial for the taste, remained unchanged. Our results show that cherry tomatoes can be cultivated in nutrient solutions prepared with salt-containing groundwater, as found in Malta. The yield declined to some extent but the quality of the produced fruits was higher compared to cultivation in salt-free media.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference46 articles.

1. A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin

2. Tomato Plant Culture: In the Field, Greenhouse, and Home Garden;Jones,2007

3. Tomatoes, peppers, eggplants, and other solanaceous vegetables;Rubatzky,1997

4. Greenhouse Tomato Fruit Quality;Domis;Hortic. Rev.,2002

5. Glasshouse crop production;Van de Vooren,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3