Seed development-related genes contribute to high yield heterosis in integrated utilization of elite autotetraploid and neo-tetraploid rice

Author:

Lu Zijun,Huang Weicong,Ge Qi,Liang Guobin,Sun Lixia,Wu Jinwen,Ghouri Fozia,Shahid Muhammad Qasim,Liu Xiangdong

Abstract

IntroductionAutotetraploid rice holds high resistance to abiotic stress and substantial promise for yield increase, but it could not be commercially used because of low fertility. Thus, our team developed neo-tetraploid rice with high fertility and hybrid vigor when crossed with indica autotetraploid rice. Despite these advances, the molecular mechanisms underlying this heterosis remain poorly understood.MethodsAn elite indica autotetraploid rice line (HD11) was used to cross with neo-tetraploid rice, and 34 hybrids were obtained to evaluate agronomic traits related to yield. WE-CLSM, RNA-seq, and CRISPR/Cas9 were employed to observe endosperm structure and identify candidate genes from two represent hybrids. Results and discussionThese hybrids showed high seed setting and an approximately 55% increase in 1000-grain weight, some of which achieved grain yields comparable to those of the diploid rice variety. The endosperm observations indicated that the starch grains in the hybrids were more compact than those in paternal lines. A total of 119 seed heterosis related genes (SHRGs) with different expressions were identified, which might contribute to high 1000-grain weight heterosis in neo-tetraploid hybrids. Among them, 12 genes had been found to regulate grain weight formation, including OsFl3, ONAC023, OsNAC024, ONAC025, ONAC026, RAG2, FLO4, FLO11, OsISA1, OsNF-YB1, NF-YC12, and OsYUC9. Haplotype analyses of these 12 genes revealed the various effects on grain weight among different haplotypes. The hybrids could polymerize more dominant haplotypes of above grain weight regulators than any homozygous cultivar. Moreover, two SHRGs (OsFl3 and SHRG2) mutants displayed a significant reduction in 1000-grain weight and an increase in grain chalkiness, indicating that OsFl3 and SHRG2 positively regulate grain weight. Our research has identified a valuable indica autotetraploid germplasm for generating strong yield heterosis in combination with neo-tetraploid lines and gaining molecular insights into the regulatory processes of heterosis in tetraploid rice.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3