Effects of on- and off-year management practices on the soil organic C fractions and microbial community in a Moso bamboo (Phyllostachys edulis) forest in subtropical China

Author:

Huang Zhiyuan,Li Qiaoling,Gai Xu,Zhang Xiaoping,Zhong Zheke,Bian Fangyuan,Yang Chuanbao

Abstract

On- and off-year management practices are usually adopted in Moso bamboo (Phyllostachys edulis) forests to achieve higher productivity. However, little is known about the effects of these management practices on soil C sequestration and microbial community structure. In the present study, soil nutrient content, organic C fractions, and bacterial and fungal communities were comparatively investigated in on- and off-year bamboo stands. The results showed that soil organic C (SOC), alkali-hydrolyzable N (AN), and available P (AP) in the on-year were significantly lower (p ≤ 0.05) than those in the off-year. Among the different soil organic C fractions, easily oxidizable organic C (EOC), microbial biomass C (MBC), Ca-bound SOC (Ca-SOC), and Fe/Al-bound SOC (Fe/Al-SOC) also had significantly higher contents in the off-year than in the on-year, with MBC and EOC decreasing by 56.3% and 24.5%, respectively, indicating that both active and passive soil organic C pools increased in the off-year. However, the alpha diversities of both soil bacteria and fungi were significantly lower in the off-year soils than in the on-year soils. The bacterial taxa Actinobacteria, Planctomycetes, WPS-2, Acidothermus, Candidatus_Solibacter, Burkholderia-Caballeronia-Paraburkholderia, and Candidatus_Xiphinematobacter were increased in off-year soils relative to on-year soils. Meanwhile, fungal taxa Ascomycota, Mortierella, Hypocrea, Cryptococcus, Clitopilus, and Ceratocystis were significantly increased in on-year soils. Soil pH, SOC, AP, MBC, EOC, and Ca-SOC were significantly correlated with bacterial and fungal communities, with soil pH being the most important driving factor for the shift in bacterial and fungal communities. Our findings showed that the studied bamboo forest possessed an inherent restorative ability in the off-year, which can reverse the soil nutrient and C depletion in the on-years and ensure soil fertility in the long term.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3