Introducing Native Tree Species Alter the Soil Organic Carbon, Nitrogen, Phosphorus, and Fine Roots in Moso Bamboo Plantations

Author:

Ning Yilin12,Chen Zedong1ORCID,Gao Hongdi3,Yang Chuanbao4,Zhang Xu1,Wang Zijie1ORCID,Wang Anke1,Du Xuhua1ORCID,Lan Lan5,Bi Yufang1

Affiliation:

1. China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, China

2. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China

3. Zhejiang Forest Resources Monitoring Center, Hangzhou 310020, China

4. Suzhou Baoyu Agricultural Technology Co., Ltd., Suzhou 215000, China

5. Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China

Abstract

Bamboo and wood-mixed forests are management models that remarkably enhance the balance and productivity of bamboo ecosystems. However, the effects of this model on soil nutrients and enzyme activities remain largely unknown. This study compared the soil organic carbon, nitrogen, phosphorus, and enzyme activity, along with the characteristics of fine roots in pure Moso bamboo plantations (CK) and those mixed with Liriodendron chinense (ML), Sassafras tzumu (MS), Cunninghamia lanceolata (MC), and Pseudolarix amabilis (MP). The results showed that mixed forests improve carbon pools in 0–40 cm soil layers, increasing the total organic C(TOC), free particulate organic C (fPOC), occluded particulate organic C (oPOC), hot-water-extractable organic C (DOC), and mineral-associated organic C (MOC). They also increase soil total N, total P, available N, available P, NH4+-N, NO3−-N, inorganic P, organic P, and microbial biomass N. Bacterial and fungal abundances, along with enzyme activities (urease, acid phosphatase, polyphenol oxidase, peroxidase, and β-glucosidase), also improved. MP and MS were the most effective. Moreover, MS and MP supported a higher biomass and length of fine root and increased the nitrogen and phosphorus uptake of Moso bamboo. In conclusion, Sassafras tzumu and Pseudolarix amabilis are optimal for mixed planting, offering substantial benefits to soil nutrient dynamics and preventing soil quality decline in Moso bamboo forests, thereby supporting better nutrient cycling and carbon sequestration. This research offers insights into enhancing soil quality through diversified Moso bamboo forestry.

Funder

Key Research and Development Program of Zhejiang Province

Fundamental Research Funds for the Central Non-profit Research Institution of Chinese Academy of Forestry

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3