EEG-Based Index for Timely Detecting User’s Drowsiness Occurrence in Automotive Applications

Author:

Di Flumeri Gianluca,Ronca Vincenzo,Giorgi Andrea,Vozzi Alessia,Aricò Pietro,Sciaraffa Nicolina,Zeng Hong,Dai Guojun,Kong Wanzeng,Babiloni Fabio,Borghini Gianluca

Abstract

Human errors are widely considered among the major causes of road accidents. Furthermore, it is estimated that more than 90% of vehicle crashes causing fatal and permanent injuries are directly related to mental tiredness, fatigue, and drowsiness of the drivers. In particular, driving drowsiness is recognized as a crucial aspect in the context of road safety, since drowsy drivers can suddenly lose control of the car. Moreover, the driving drowsiness episodes mostly appear suddenly without any prior behavioral evidence. The present study aimed at characterizing the onset of drowsiness in car drivers by means of a multimodal neurophysiological approach to develop a synthetic electroencephalographic (EEG)-based index, able to detect drowsy events. The study involved 19 participants in a simulated scenario structured in a sequence of driving tasks under different situations and traffic conditions. The experimental conditions were designed to induce prominent mental drowsiness in the final part. The EEG-based index, so-called “MDrow index”, was developed and validated to detect the driving drowsiness of the participants. The MDrow index was derived from the Global Field Power calculated in the Alpha EEG frequency band over the parietal brain sites. The results demonstrated the reliability of the proposed MDrow index in detecting the driving drowsiness experienced by the participants, resulting also more sensitive and timely sensible with respect to more conventional autonomic parameters, such as the EyeBlinks Rate and the Heart Rate Variability, and to subjective measurements (self-reports).

Funder

Horizon 2020 Framework Programme

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3