Learned Overweight Internal Model Can Be Activated to Maintain Equilibrium When Tactile Cues Are Uncertain: Evidence From Cortical and Behavioral Approaches

Author:

Lhomond Olivia,Juan Benjamin,Fornerone Theo,Cossin Marion,Paleressompoulle Dany,Prince François,Mouchnino Laurence

Abstract

Human adaptive behavior in sensorimotor control is aimed to increase the confidence in feedforward mechanisms when sensory afferents are uncertain. It is thought that these feedforward mechanisms rely on predictions from internal models. We investigate whether the brain uses an internal model of physical laws (gravitational and inertial forces) to help estimate body equilibrium when tactile inputs from the foot sole are depressed by carrying extra weight. As direct experimental evidence for such a model is limited, we used Judoka athletes thought to have built up internal models of external loads (i.e., opponent weight management) as compared with Non-Athlete participants and Dancers (highly skilled in balance control). Using electroencephalography, we first (experiment 1) tested the hypothesis that the influence of tactile inputs was amplified by descending cortical efferent signals. We compared the amplitude of P1N1 somatosensory cortical potential evoked by electrical stimulation of the foot sole in participants standing still with their eyes closed. We showed smaller P1N1 amplitudes in the Load compared to No Load conditions in both Non-Athletes and Dancers. This decrease neural response to tactile stimulation was associated with greater postural oscillations. By contrast in the Judoka’s group, the neural early response to tactile stimulation was unregulated in the Load condition. This suggests that the brain can selectively increase the functional gain of sensory inputs, during challenging equilibrium tasks when tactile inputs were mechanically depressed by wearing a weighted vest. In Judokas, the activation of regions such as the right posterior inferior parietal cortex (PPC) as early as the P1N1 is likely the source of the neural responses being maintained similar in both Load and No Load conditions. An overweight internal model stored in the right PPC known to be involved in maintaining a coherent representation of one’s body in space can optimize predictive mechanisms in situations with high balance constraints (Experiment 2). This hypothesis has been confirmed by showing that postural reaction evoked by a translation of the support surface on which participants were standing wearing extra-weight was improved in Judokas.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3