When mechanical engineering inspired from physiology improves postural-related somatosensory processes

Author:

Sutter Chloé,Fabre Marie,Massi Francesco,Blouin Jean,Mouchnino Laurence

Abstract

AbstractDespite numerous studies uncovering the neural signature of tactile processing, tactile afferent inputs relating to the contact surface has not been studied so far. Foot tactile receptors being the first stimulated by the relative movement of the foot skin and the underneath moving support play an important role in the sensorimotor transformation giving rise to a postural reaction. A biomimetic surface, i.e., complying with the skin dermatoglyphs and tactile receptors characteristics should facilitate the cortical processes. Participants (n = 15) stood either on a biomimetic surface or on two control surfaces, when a sudden acceleration of the supporting surface was triggered (experiment 1). A larger intensity and shorter somatosensory response (i.e., SEP) was evoked by the biomimetic surface motion. This result and the associated decrease of theta activity (5–7 Hz) over the posterior parietal cortex suggest that increasing the amount of sensory input processing could make the balance task less challenging when standing on a biomimetic surface. This key point was confirmed by a second experiment (n = 21) where a cognitive task was added, hence decreasing the attentional resources devoted to the balance motor task. Greater efficiency of the postural reaction was observed while standing on the biomimetic than on the control surfaces.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3