Application of multi-task transfer learning: The combination of EA and optimized subband regularized CSP to classification of 8-channel EEG signals with small dataset

Author:

Long Taixue,Wan Min,Jian Wenjuan,Dai Honghui,Nie Wenbing,Xu Jianzhong

Abstract

IntroductionThe volume conduction effect and high dimensional characteristics triggered by the excessive number of channels of EEG cap-acquired signals in BCI systems can increase the difficulty of classifying EEG signals and the lead time of signal acquisition. We aim to combine transfer learning to decode EEG signals in the few-channel case, improve the classification performance of the motor imagery BCI system across subject cases, reduce the cost of signal acquisition performed by the BCI system, and improve the usefulness of the system.MethodsDataset2a from BCI CompetitionIV(2008) was used as Dataset1, and our team's self-collected dataset was used as Dataset2. Dataset1 acquired EEG signals from 9 subjects using a 22-channel device with a sampling frequency of 250 Hz. Dataset2 acquired EEG signals from 10 healthy subjects (8 males and 2 females; age distribution between 21-30 years old; mean age 25 years old) using an 8-channel system with a sampling frequency of 1000 Hz. We introduced EA in the data preprocessing process to reduce the signal differences between subjects and proposed VFB-RCSP in combination with RCSP and FBCSP to optimize the effect of feature extraction.ResultsExperiments were conducted on Dataset1 with EEG data containing only 8 channels and achieved an accuracy of 78.01 and a kappa coefficient of 0.54. The accuracy exceeded most of the other methods proposed in recent years, even though the number of channels used was significantly reduced. On Dataset 2, an accuracy of 59.77 and a Kappa coefficient of 0.34 were achieved, which is a significant improvement compared to other poorly improved classical protocols.DiscussionOur work effectively improves the classification of few-channel EEG data. It overcomes the dependence of existing algorithms on the number of channels, the number of samples, and the frequency band, which is significant for reducing the complexity of BCI models and improving the user-friendliness of BCI systems.

Funder

Key Research and Development Program of Jiangxi Province

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3