Optimal Channel Selection of Multiclass Motor Imagery Classification Based on Fusion Convolutional Neural Network with Attention Blocks

Author:

Khabti Joharah1ORCID,AlAhmadi Saad1ORCID,Soudani Adel1ORCID

Affiliation:

1. Department of Computer Science, College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11543, Saudi Arabia

Abstract

The widely adopted paradigm in brain–computer interfaces (BCIs) involves motor imagery (MI), enabling improved communication between humans and machines. EEG signals derived from MI present several challenges due to their inherent characteristics, which lead to a complex process of classifying and finding the potential tasks of a specific participant. Another issue is that BCI systems can result in noisy data and redundant channels, which in turn can lead to increased equipment and computational costs. To address these problems, the optimal channel selection of a multiclass MI classification based on a Fusion convolutional neural network with Attention blocks (FCNNA) is proposed. In this study, we developed a CNN model consisting of layers of convolutional blocks with multiple spatial and temporal filters. These filters are designed specifically to capture the distribution and relationships of signal features across different electrode locations, as well as to analyze the evolution of these features over time. Following these layers, a Convolutional Block Attention Module (CBAM) is used to, further, enhance EEG signal feature extraction. In the process of channel selection, the genetic algorithm is used to select the optimal set of channels using a new technique to deliver fixed as well as variable channels for all participants. The proposed methodology is validated showing 6.41% improvement in multiclass classification compared to most baseline models. Notably, we achieved the highest results of 93.09% for binary classes involving left-hand and right-hand movements. In addition, the cross-subject strategy for multiclass classification yielded an impressive accuracy of 68.87%. Following channel selection, multiclass classification accuracy was enhanced, reaching 84.53%. Overall, our experiments illustrated the efficiency of the proposed EEG MI model in both channel selection and classification, showing superior results with either a full channel set or a reduced number of channels.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3