Rehabilomics: A state-of-the-art review of framework, application, and future considerations

Author:

Cao Wenyue,Zhang Xiuwei,Qiu Huaide

Abstract

Rehabilomics is an important research framework that allows omics research built upon rehabilitation practice, especially in function evaluation, outcome prediction, and individualized rehabilitation. In the field of rehabilomics, biomarkers can serve as objectively measured indicators for body functioning, so as to complement the International Classification of Functioning, Disability, and Health (ICF) assessment. Studies on traumatic brain injury (TBI), stroke, and Parkinson's disease have shown that biomarkers (such as serum markers, MRI, and digital signals derived from sensors) are correlated with diagnosis, disease severity, and prognosis. Rehabilomics also examines a wide range of individual biological characteristics in order to develop personalized rehabilitation programs. Secondary prevention and rehabilitation of stroke have already adopted a rehabilomic approach to individualize treatment programs. Mechanisms of non-pharmacological therapies are expected to be unveiled in light of rehabilomics research. When formulating the research plan, learning from established databases is recommended and a multidisciplinary collaborative team is warranted. Although still in its infancy, the advancement and incorporation of rehabilomics has the potential to make a significant impact on public health.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Reference66 articles.

1. Advancing the evidence base of rehabilitation treatments: a developmental approach;Whyte;Arch Phys Med Rehabil.,2012

2. TBI translational rehabilitation research in the 21st Century: exploring a Rehabilomics research model;Wagner;Eur J Phys Rehabil Med.,2010

3. The Traumatic Brain Injury Model Systems: a longitudinal database, research, collaboration and knowledge translation;Wagner;Eur J Phys Rehabil Med.,2010

4. TBI rehabilomics research: an exemplar of a biomarker-based approach to precision care for populations with disability;Wagner;Curr Neurol Neurosci Rep.,2017

5. Biomarker definitions and their applications;Califf;Exp Biol Med.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3