Robot-Aided Motion Analysis in Neurorehabilitation: Benefits and Challenges

Author:

Bonanno Mirjam1ORCID,Calabrò Rocco Salvatore1ORCID

Affiliation:

1. IRCCS Centro Neurolesi Bonino Pulejo, Cda Casazza, S.S. 113, 98124 Messina, Italy

Abstract

In the neurorehabilitation field, robot-aided motion analysis (R-AMA) could be helpful for two main reasons: (1) it allows the registration and monitoring of patients’ motion parameters in a more accurate way than clinical scales (clinical purpose), and (2) the multitude of data produced using R-AMA can be used to build machine learning algorithms, detecting prognostic and predictive factors for better motor outcomes (research purpose). Despite their potential in clinical settings, robotic assessment tools have not gained widespread clinical acceptance. Some barriers remain to their clinical adoption, such as their reliability and validity compared to the existing standardized scales. In this narrative review, we sought to investigate the usefulness of R-AMA systems in patients affected by neurological disorders. We found that the most used R-AMA tools are the Lokomat (an exoskeleton device used for gait and balance rehabilitation) and the Armeo (both Power and Spring, used for the rehabilitation of upper limb impairment). The motion analysis provided by these robotic devices was used to tailor rehabilitation sessions based on the objective quantification of patients’ functional abilities. Spinal cord injury and stroke patients were the most investigated individuals with these common exoskeletons. Research on the use of robotics as an assessment tool should be fostered, taking into account the biomechanical parameters able to predict the accuracy of movements.

Funder

Current Research funds 2023, Ministry of Health, Italy

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3