Toward neural health measurements for cochlear implantation: The relationship among electrode positioning, the electrically evoked action potential, impedances and behavioral stimulation levels

Author:

Lambriks Lars,van Hoof Marc,Debruyne Joke,Janssen Miranda,Hof Janny,Hellingman Katja,Devocht Elke,George Erwin

Abstract

IntroductionEstimating differences in neural health across different sites within the individual cochlea potentially enables clinical applications for subjects with a cochlear implant. The electrically evoked compound action potential (ECAP) is a measure of neural excitability that possibly provides an indication of a neural condition. There are many factors, however, that affect this measure and increase the uncertainty of its interpretation. To better characterize the ECAP response, its relationship with electrode positioning, impedances, and behavioral stimulation levels was explored.MethodsA total of 14 adult subjects implanted with an Advanced Bionics cochlear electrode array were prospectively followed up from surgery to 6 months postoperative. Insertion depth, distance to the modiolus, and distance to the medial wall were assessed for each electrode by postoperative CT analysis. ECAPs were measured intraoperatively and at three visits postoperatively on all 16 electrodes using the NRI feature of clinical programming software and characterized using multiple parameters. Impedances and behavioral stimulation levels were measured at every fitting session.ResultsPatterns in ECAPs and impedances were consistent over time, but high variability existed among subjects and between different positions in the cochlea. Electrodes located closer to the apex of the cochlea and closer to the modiolus generally showed higher neural excitation and higher impedances. Maximum loudness comfort levels were correlated strongly with the level of current needed to elicit a response of 100 μV ECAP.ConclusionMultiple factors contribute to the ECAP response in subjects with a cochlear implant. Further research might address whether the ECAP parameters used in this study will benefit clinical electrode fitting or the assessment of auditory neuron integrity.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3