Author:
Zhang Zhenguang,Lin Chuan,Qiao Yakun,Pan Yongcai
Abstract
Edge detection is of great importance to the middle and high-level vision task in computer vision, and it is useful to improve its performance. This paper is different from previous edge detection methods designed only for decoding networks. We propose a new edge detection network composed of modulation coding network and decoding network. Among them, modulation coding network is the combination of modulation enhancement network and coding network designed by using the self-attention mechanism in Transformer, which is inspired by the selective attention mechanism of V1, V2, and V4 in biological vision. The modulation enhancement network effectively enhances the feature extraction ability of the encoding network, realizes the selective extraction of the global features of the input image, and improves the performance of the entire model. In addition, we designed a new decoding network based on the function of integrating feature information in the IT layer of the biological vision system. Unlike previous decoding networks, it combines top-down decoding and bottom-up decoding, uses down-sampling decoding to extract more features, and then achieves better performance by fusing up-sampling decoding features. We evaluated the proposed method experimentally on multiple publicly available datasets BSDS500, NYUD-V2, and barcelona images for perceptual edge detection (BIPED). Among them, the best performance is achieved on the NYUD and BIPED datasets, and the second result is achieved on the BSDS500. Experimental results show that this method is highly competitive among all methods.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangxi Province
Reference59 articles.
1. Feedback and surround modulated boundary detection.;Akbarinia;International Journal of Computer Vision,2018
2. Ventral extra-striate cortical areas are required for human visual texture segmentation.;Allen;Journal of Vision,2018
3. Contour detection and hierarchical image segmentation.;Arbelaez;IEEE transactions on pattern analysis and machine intelligence,2010
4. Deepedge: A multi-scale bifurcated deep network for top-down contour detection;Bertasius;Proceedings of the IEEE conference on computer vision and pattern recognition,2015
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献