Bio-Inspired Network for Diagnosing Liver Steatosis in Ultrasound Images

Author:

Yao Yuan1,Zhang Zhenguang2,Peng Bo3ORCID,Tang Jin4

Affiliation:

1. General Practice Medical Center, West China Hospital, Sichuan University, Chengdu 610044, China

2. School of Automation, Guangxi University of Science and Technology, Liuzhou 545006, China

3. School of Computing and Artificial Intelligent, Southwest Jiaotong University, Chengdu 611756, China

4. Tiaodenghe Community Health Service Center, Chengdu 610066, China

Abstract

Using ultrasound imaging to diagnose liver steatosis is of great significance for preventing diseases such as cirrhosis and liver cancer. Accurate diagnosis under conditions of low quality, noise and poor resolutions is still a challenging task. Physiological studies have shown that the visual cortex of the biological visual system has selective attention neural mechanisms and feedback regulation of high features to low features. When processing visual information, these cortical regions selectively focus on more sensitive information and ignore unimportant details, which can effectively extract important features from visual information. Inspired by this, we propose a new diagnostic network for hepatic steatosis. In order to simulate the selection mechanism and feedback regulation of the visual cortex in the ventral pathway, it consists of a receptive field feature extraction module, parallel attention module and feedback connection. The receptive field feature extraction module corresponds to the inhibition of the non-classical receptive field of V1 neurons on the classical receptive field. It processes the input image to suppress the unimportant background texture. Two types of attention are adopted in the parallel attention module to process the same visual information and extract different important features for fusion, which improves the overall performance of the model. In addition, we construct a new dataset of fatty liver ultrasound images and validate the proposed model on this dataset. The experimental results show that the network has good performance in terms of sensitivity, specificity and accuracy for the diagnosis of fatty liver disease.

Funder

Key Research and Development Program of Sichuan Province

Sichuan Science and Technology Program Project

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3