Dual-band polarimetric HRRP recognition via a brain-inspired multi-channel fusion feature extraction network

Author:

Yang Wei,Zhou Qiang,Yuan Mingchen,Li Yang,Wang Yanhua,Zhang Liang

Abstract

Radar high-resolution range profile (HRRP) provides geometric and structural information of target, which is important for radar automatic target recognition (RATR). However, due to the limited information dimension of HRRP, achieving accurate target recognition is challenging in applications. In recent years, with the rapid development of radar components and signal processing technology, the acquisition and use of target multi-frequency and polarization scattering information has become a significant way to improve target recognition performance. Meanwhile, deep learning inspired by the human brain has shown great promise in pattern recognition applications. In this paper, a Multi-channel Fusion Feature Extraction Network (MFFE-Net) inspired by the human brain is proposed for dual-band polarimetric HRRP, aiming at addressing the challenges faced in HRRP target recognition. In the proposed network, inspired by the human brain’s multi-dimensional information interaction, the similarity and difference features of dual-frequency HRRP are first extracted to realize the interactive fusion of frequency features. Then, inspired by the human brain’s selective attention mechanism, the interactive weights are obtained for multi-polarization features and multi-scale representation, enabling feature aggregation and multi-scale fusion. Finally, inspired by the human brain’s hierarchical learning mechanism, the layer-by-layer feature extraction and fusion with residual connections are designed to enhance the separability of features. Experiments on simulated and measured datasets verify the accurate recognition capability of MFFE-Net, and ablative studies are conducted to confirm the effectiveness of components of network for recognition.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference53 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3