Adaptive soft threshold transformer for radar high‐resolution range profile target recognition

Author:

Chen Siyu1ORCID,Huang Xiaohong1,Xu Weibo1

Affiliation:

1. School of Electronics and Communication Engineering Shenzhen Campus of Sun Yat‐sen University Shenzhen China

Abstract

AbstractRadar High‐Resolution Range Profile (HRRP) has great potential for target recognition because it can provide target structural information. Existing work commonly applies deep learning to extract deep features from HRRPs and achieve impressive recognition performance. However, most approaches are unable to distinguish between the target and non‐target regions in the feature extraction process and do not fully consider the impact of background noise, which is harmful to recognition, especially at low signal‐to‐noise ratios (SNR). To tackle these problems, the authors propose a radar HRRP target recognition framework termed Adaptive Soft Threshold Transformer (ASTT), which is composed of a patch embedding (PE) layer, ASTT blocks, and Discrete Wavelet Patch Merging (DWPM) layers. Given the limited semantic information of individual range cells, the PE layer integrates nearby isolated range cells into semantically explicit target structure patches. Thanks to its convolutional layer and attention mechanism, the ASTT blocks assign a weight to each patch to locate the target areas in the HRRP while capturing local features and constructing sequence correlations. Moreover, the ASTT block efficiently filters noise features in combination with a soft threshold function to further enhance the recognition performance at low SNR, where the threshold is adaptively determined. Utilising the reversibility of the discrete wavelet transform, the DWPM layer efficiently eliminates the loss of valuable information during the pooling process. Experiments based on simulated and measured datasets show that the proposed method has excellent target recognition performance, noise robustness, and small‐scale range shift robustness.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3