Surrounding-aware representation prediction in Birds-Eye-View using transformers

Author:

Yu Jiahui,Zheng Wenli,Chen Yongquan,Zhang Yutong,Huang Rui

Abstract

Birds-Eye-View (BEV) maps provide an accurate representation of sensory cues present in the surroundings, including dynamic and static elements. Generating a semantic representation of BEV maps can be a challenging task since it relies on object detection and image segmentation. Recent studies have developed Convolutional Neural networks (CNNs) to tackle the underlying challenge. However, current CNN-based models encounter a bottleneck in perceiving subtle nuances of information due to their limited capacity, which constrains the efficiency and accuracy of representation prediction, especially for multi-scale and multi-class elements. To address this issue, we propose novel neural networks for BEV semantic representation prediction that are built upon Transformers without convolution layers in a significantly different way from existing pure CNNs and hybrid architectures that merge CNNs and Transformers. Given a sequence of image frames as input, the proposed neural networks can directly output the BEV maps with per-class probabilities in end-to-end forecasting. The core innovations of the current study contain (1) a new pixel generation method powered by Transformers, (2) a novel algorithm for image-to-BEV transformation, and (3) a novel network for image feature extraction using attention mechanisms. We evaluate the proposed Models performance on two challenging benchmarks, the NuScenes dataset and the Argoverse 3D dataset, and compare it with state-of-the-art methods. Results show that the proposed model outperforms CNNs, achieving a relative improvement of 2.4 and 5.2% on the NuScenes and Argoverse 3D datasets, respectively.

Funder

Shenzhen Science and Technology Innovation Program

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference41 articles.

1. Layer normalization;Ba;arXiv,2016

2. “NuScenes: a multimodal dataset for autonomous driving,”;Caesar,2020

3. “Efficient grasp detection network with gaussian-based grasp representation for robotic manipulation,”;Cao

4. Neurograsp: multimodal neural network with euler region regression for neuromorphic vision-based grasp pose estimation;Cao;IEEE Trans. Instrum. Meas

5. “End-to-end object detection with transformers,”;Carion,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3