Lightweight UAV Object-Detection Method Based on Efficient Multidimensional Global Feature Adaptive Fusion and Knowledge Distillation

Author:

Sun Jian1,Gao Hongwei23,Yan Zhiwen4,Qi Xiangjing2,Yu Jiahui5,Ju Zhaojie6

Affiliation:

1. School of Graduate, Shenyang Ligong University, Shenyang 110159, China

2. School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China

3. China State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110017, China

4. Xi’an Modern Control Technology Research Institute, Xi’an 710100, China

5. Department of Biomedical Engineering, Zhejiang University, Hangzhou 310013, China

6. School of Computing, University of Portsmouth, Portsmouth PO1 2UP, UK

Abstract

Unmanned aerial vehicles (UAVs) equipped with remote-sensing object-detection devices are increasingly employed across diverse domains. However, the detection of small, densely-packed objects against complex backgrounds and at various scales presents a formidable challenge to conventional detection algorithms, exacerbated by the computational constraints of UAV-embedded systems that necessitate a delicate balance between detection speed and accuracy. To address these issues, this paper proposes the Efficient Multidimensional Global Feature Adaptive Fusion Network (MGFAFNET), an innovative detection method for UAV platforms. The novelties of our approach are threefold: Firstly, we introduce the Dual-Branch Multidimensional Aggregation Backbone Network (DBMA), an efficient architectural innovation that captures multidimensional global spatial interactions, significantly enhancing feature distinguishability for complex and occluded targets. Simultaneously, it reduces the computational burden typically associated with processing high-resolution imagery. Secondly, we construct the Dynamic Spatial Perception Feature Fusion Network (DSPF), which is tailored specifically to accommodate the notable scale variances encountered during UAV operation. By implementing a multi-layer dynamic spatial fusion coupled with feature-refinement modules, the network adeptly minimizes informational redundancy, leading to more efficient feature representation. Finally, our novel Localized Compensation Dual-Mask Distillation (LCDD) strategy is devised to adeptly translate the rich local and global features from the higher-capacity teacher network to the more resource-constrained student network, capturing both low-level spatial details and high-level semantic cues with unprecedented efficacy. The practicability and superior performance of our MGFAFNET are corroborated by a dedicated UAV detection platform, showcasing remarkable improvements over state-of-the-art object-detection methods, as demonstrated by rigorous evaluations conducted using the VisDrone2021 benchmark and a meticulously assembled proprietary dataset.

Funder

Technology Development Program

LiaoNing Province Joint Open Fund for Key Scientific and Technological Innovation Bases

0pen fund for the State Key Laboratory of Robotics

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LD-YOLOv10: A Lightweight Target Detection Algorithm for Drone Scenarios Based on YOLOv10;Electronics;2024-08-17

2. Object Detection Algorithm of Drone Image Combining Attention Mechanism and Context;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3