LD-YOLOv10: A Lightweight Target Detection Algorithm for Drone Scenarios Based on YOLOv10

Author:

Qiu Xiaoyang1,Chen Yajun1,Cai Wenhao1,Niu Meiqi1,Li Jianying1

Affiliation:

1. School of Electronic Information Engineering, China West Normal University, Nanchong 637009, China

Abstract

Due to the limited computing resources and storage capacity of edge detection devices, efficient detection algorithms are typically required to meet real-time and accuracy requirements. Existing detectors often require a large number of parameters and high computational power to improve accuracy, which reduces detection speed and performance on low-power devices. To reduce computational load and enhance detection performance on edge devices, we propose a lightweight drone target detection algorithm, LD-YOLOv10. Firstly, we design a novel lightweight feature extraction structure called RGELAN, which utilizes re-parameterized convolutions and the newly designed Conv-Tiny as the computational structure to reduce the computational burden of feature extraction. The AIFI module was introduced, utilizing its multi-head attention mechanism to enhance the expression of semantic information. We construct the DR-PAN Neck structure, which obtains weak features of small targets with minimal computational load. Wise-IoU and EIoU are combined as new bounding box regression loss functions to adjust the competition between anchor boxes of different quality and the sensitivity of anchor box aspect ratios, providing a more intelligent gradient allocation strategy. Extensive experiments on the VisdroneDET-2021 and UAVDT datasets show that LD-YOLOv10 reduces the number of parameters by 62.4% while achieving a slight increase in accuracy and has a faster detection speed compared to other lightweight algorithms. When deployed on the low-power NVIDIA Jetson Orin Nano device, LD-YOLOv10 achieves a detection speed of 25 FPS.

Funder

China West Normal University Talent Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3