Design of urban road fault detection system based on artificial neural network and deep learning

Author:

Lin Ying

Abstract

IntroductionIn urban traffic management, the timely detection of road faults plays a crucial role in improving traffic efficiency and safety. However, conventional methods often fail to fully leverage the information from road topology and traffic data.MethodsTo address this issue, we propose an innovative detection system that combines Artificial Neural Networks (ANNs), specifically Graph Convolutional Networks (GCN), Bidirectional Gated Recurrent Units (BiGRU), and self-attention mechanisms. Our approach begins by representing the road topology as a graph and utilizing GCN to model it. This allows us to learn the relationships between roads and capture their structural dependencies. By doing so, we can effectively incorporate the spatial information provided by the road network. Next, we employ BiGRU to model the historical traffic data, enabling us to capture the temporal dynamics and patterns in the traffic flow. The BiGRU architecture allows for bidirectional processing, which aids in understanding the traffic conditions based on both past and future information. This temporal modeling enhances our system's ability to handle time-varying traffic patterns. To further enhance the feature representations, we leverage self-attention mechanisms. By combining the hidden states of the BiGRU with self-attention, we can assign importance weights to different temporal features, focusing on the most relevant information. This attention mechanism helps to extract salient features from the traffic data. Subsequently, we merge the features learned by GCN from the road topology and BiGRU from the traffic data. This fusion of spatial and temporal information provides a comprehensive representation of the road status.Results and discussionsBy employing a Multilayer Perceptron (MLP) as a classifier, we can effectively determine whether a road is experiencing a fault. The MLP model is trained using labeled road fault data through supervised learning, optimizing its performance for fault detection. Experimental evaluations of our system demonstrate excellent performance in road fault detection. Compared to traditional methods, our system achieves more accurate fault detection, thereby improving the efficiency of urban traffic management. This is of significant importance for city administrators, as they can promptly identify road faults and take appropriate measures for repair and traffic diversion.

Publisher

Frontiers Media SA

Reference32 articles.

1. 987992 BoyrazP. AcarM. KerrD. 2007

2. Deep learning-based remote and social sensing data fusion for urban region function recognition;Cao;ISPRS J. Photogr. Remote Sens,2020

3. Road roughness level identification based on bigru network;Chen;IEEE Access,2022

4. Realizing asynchronous finite-time robust tracking control of switched flight vehicles by using nonfragile deep reinforcement learning;Cheng;Front. Neurosci,2023

5. CordtsM. OmranM. RamosS. ScharwächterT. EnzweilerM. BenensonR. 2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3