Realizing asynchronous finite-time robust tracking control of switched flight vehicles by using nonfragile deep reinforcement learning

Author:

Cheng Haoyu,Song Ruijia,Li Haoran,Wei Wencheng,Zheng Biyu,Fang Yangwang

Abstract

In this study, a novel nonfragile deep reinforcement learning (DRL) method was proposed to realize the finite-time control of switched unmanned flight vehicles. Control accuracy, robustness, and intelligence were enhanced in the proposed control scheme by combining conventional robust control and DRL characteristics. In the proposed control strategy, the tracking controller consists of a dynamics-based controller and a learning-based controller. The conventional robust control approach for the nominal system was used for realizing a dynamics-based baseline tracking controller. The learning-based controller based on DRL was developed to compensate model uncertainties and enhance transient control accuracy. The multiple Lyapunov function approach and mode-dependent average dwell time approach were combined to analyze the finite-time stability of flight vehicles with asynchronous switching. The linear matrix inequalities technique was used to determine the solutions of dynamics-based controllers. Online optimization was formulated as a Markov decision process. The adaptive deep deterministic policy gradient algorithm was adopted to improve efficiency and convergence. In this algorithm, the actor–critic structure was used and adaptive hyperparameters were introduced. Unlike the conventional DRL algorithm, nonfragile control theory and adaptive reward function were used in the proposed algorithm to achieve excellent stability and training efficiency. We demonstrated the effectiveness of the presented algorithm through comparative simulations.

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3