A hybrid P300-SSVEP brain-computer interface speller with a frequency enhanced row and column paradigm

Author:

Bai Xin,Li Minglun,Qi Shouliang,Ng Anna Ching Mei,Ng Tit,Qian Wei

Abstract

ObjectiveThis study proposes a new hybrid brain-computer interface (BCI) system to improve spelling accuracy and speed by stimulating P300 and steady-state visually evoked potential (SSVEP) in electroencephalography (EEG) signals.MethodsA frequency enhanced row and column (FERC) paradigm is proposed to incorporate the frequency coding into the row and column (RC) paradigm so that the P300 and SSVEP signals can be evoked simultaneously. A flicker (white-black) with a specific frequency from 6.0 to 11.5 Hz with an interval of 0.5 Hz is assigned to one row or column of a 6 × 6 layout, and the row/column flashes are carried out in a pseudorandom sequence. A wavelet and support vector machine (SVM) combination is adopted for P300 detection, an ensemble task-related component analysis (TRCA) method is used for SSVEP detection, and the two detection possibilities are fused using a weight control approach.ResultsThe implemented BCI speller achieved an accuracy of 94.29% and an information transfer rate (ITR) of 28.64 bit/min averaged across 10 subjects during the online tests. An accuracy of 96.86% is obtained during the offline calibration tests, higher than that of only using P300 (75.29%) or SSVEP (89.13%). The SVM in P300 outperformed the previous linear discrimination classifier and its variants (61.90–72.22%), and the ensemble TRCA in SSVEP outperformed the canonical correlation analysis method (73.33%).ConclusionThe proposed hybrid FERC stimulus paradigm can improve the performance of the speller compared with the classical single stimulus paradigm. The implemented speller can achieve comparable accuracy and ITR to its state-of-the-art counterparts with advanced detection algorithms.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3