A Novel Asynchronous Brain Signals-Based Driver–Vehicle Interface for Brain-Controlled Vehicles

Author:

Lian Jinling1ORCID,Guo Yanli2,Qiao Xin1,Wang Changyong1,Bi Luzheng3

Affiliation:

1. Beijing Institute of Basic Medical Sciences, 27 Taiping Rd., Beijing 100850, China

2. Jingnan Medical Area, Chinese PLA General Hospital, Beijing 100071, China

3. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Directly applying brain signals to operate a mobile manned platform, such as a vehicle, may help people with neuromuscular disorders regain their driving ability. In this paper, we developed a novel electroencephalogram (EEG) signal-based driver–vehicle interface (DVI) for the continuous and asynchronous control of brain-controlled vehicles. The proposed DVI consists of the user interface, the command decoding algorithm, and the control model. The user interface is designed to present the control commands and induce the corresponding brain patterns. The command decoding algorithm is developed to decode the control command. The control model is built to convert the decoded commands to control signals. Offline experimental results show that the developed DVI can generate a motion control command with an accuracy of 83.59% and a detection time of about 2 s, while it has a recognition accuracy of 90.06% in idle states. A real-time brain-controlled simulated vehicle based on the DVI was developed and tested on a U-turn road. Experimental results show the feasibility of the DVI for continuously and asynchronously controlling a vehicle. This work not only advances the research on brain-controlled vehicles but also provides valuable insights into driver–vehicle interfaces, multimodal interaction, and intelligent vehicles.

Funder

National Natural Science Foundation of China

Military Medical Science and Technology Youth Cultivation Program Incubation Project

Youth Talent Fund of Beijing Institute of Basic Medical Sciences

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3