Author:
Chen Heping,Shi Yan,Bo Bin,Zhao Denghui,Miao Peng,Tong Shanbao,Wang Chunliang
Abstract
Laser speckle contrast imaging (LSCI) is a full-field, high spatiotemporal resolution and low-cost optical technique for measuring blood flow, which has been successfully used for neurovascular imaging. However, due to the low signal–noise ratio and the relatively small sizes, segmenting the cerebral vessels in LSCI has always been a technical challenge. Recently, deep learning has shown its advantages in vascular segmentation. Nonetheless, ground truth by manual labeling is usually required for training the network, which makes it difficult to implement in practice. In this manuscript, we proposed a deep learning-based method for real-time cerebral vessel segmentation of LSCI without ground truth labels, which could be further integrated into intraoperative blood vessel imaging system. Synthetic LSCI images were obtained with a synthesis network from LSCI images and public labeled dataset of Digital Retinal Images for Vessel Extraction, which were then used to train the segmentation network. Using matching strategies to reduce the size discrepancy between retinal images and laser speckle contrast images, we could further significantly improve image synthesis and segmentation performance. In the testing LSCI images of rodent cerebral vessels, the proposed method resulted in a dice similarity coefficient of over 75%.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献