Robust vessel segmentation in laser speckle contrast images based on semi-weakly supervised learning

Author:

Yang Kun,Chang Shilong,Yuan Jiacheng,Fu Suzhong,Qin Geng,Liu Shuang,Liu Kun,Zhao Qingliang,Xue Linyan

Abstract

Abstract Objective. The goal of this study is to develop a robust semi-weakly supervised learning strategy for vessel segmentation in laser speckle contrast imaging (LSCI), addressing the challenges associated with the low signal-to-noise ratio, small vessel size, and irregular vascular aberration in diseased regions, while improving the performance and robustness of the segmentation method. Approach. For the training dataset, the healthy vascular images denoted as normal-vessel samples were manually labeled, while the diseased LSCI images involving tumor or embolism were denoted as abnormal-vessel samples and annotated as pseudo labels by the traditional semantic segmentation methods. In the training phase, the pseudo labels were constantly updated to improve the segmentation accuracy based on DeepLabv3+. Objective evaluation was conducted on the normal-vessel test set, while subjective evaluation was performed on the abnormal-vessel test set. Main results. The proposed method achieved an IOU of 0.8671, a Dice of 0.9288, and a mean relative percentage difference (mRPD) with supervised learning of 0.5% in the objective evaluation. In the subjective evaluation, our method significantly outperformed other methods in main vessel segmentation, tiny vessel segmentation, and blood vessel connection. Additionally, our method exhibited robustness when abnormal-vessel style noise was added to normal-vessel samples using a style translation network. Significance. The proposed semi-weakly supervised learning strategy demonstrates high efficiency and excellent robustness for vascular segmentation in LSCI, providing a potential tool for assessing the morphological and structural features of vessels in clinical applications.

Funder

the Fundamental Research Funds for the Central Universities

Basic and Applied Basic Research Foundation of Guangdong Province

the President of Hebei University

the Research Fund for Foundation of Hebei University

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liver vessel MRI image segmentation based on dual-path diffusion model;Journal of Radiation Research and Applied Sciences;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3