An EEG-based attention recognition method: fusion of time domain, frequency domain, and non-linear dynamics features

Author:

Chen Di,Huang Haiyun,Bao Xiaoyu,Pan Jiahui,Li Yuanqing

Abstract

IntroductionAttention is a complex cognitive function of human brain that plays a vital role in our daily lives. Electroencephalogram (EEG) is used to measure and analyze attention due to its high temporal resolution. Although several attention recognition brain-computer interfaces (BCIs) have been proposed, there is a scarcity of studies with a sufficient number of subjects, valid paradigms, and reliable recognition analysis across subjects.MethodsIn this study, we proposed a novel attention paradigm and feature fusion method to extract features, which fused time domain features, frequency domain features and nonlinear dynamics features. We then constructed an attention recognition framework for 85 subjects.Results and discussionWe achieved an intra-subject average classification accuracy of 85.05% ± 6.87% and an inter-subject average classification accuracy of 81.60% ± 9.93%, respectively. We further explored the neural patterns in attention recognition, where attention states showed less activation than non-attention states in the prefrontal and occipital areas in α, β and θ bands. The research explores, for the first time, the fusion of time domain features, frequency domain features and nonlinear dynamics features for attention recognition, providing a new understanding of attention recognition.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference91 articles.

1. Distinguishing mental attention states of humans via an EEG-based passive BCI using machine learning methods;Acı;Expert Syst. Appl,2019

2. Classification of EEG signals based on pattern recognition approach;Amin;Front. Comput. Neurosci,2017

3. Predicting lapses of attention with sleep-like slow waves;Andrillon;Nat. Commun,2021

4. “Detection of epilepsy based on discrete wavelet transform and teagerkaiser energy operator,”;Badani;2017 IEEE Calcutta Conference (CALCON),2017

5. The sample entropy and its application in EEG based epilepsy detection;Bai;J. Biomed. Eng,2007

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3