A Quantized Convolutional Neural Network Implemented With Memristor for Image Denoising and Recognition

Author:

Zhang Yuejun,Wu Zhixin,Liu Shuzhi,Guo Zhecheng,Chen Qilai,Gao Pingqi,Wang Pengjun,Liu Gang

Abstract

The interference of noise will cause the degradation of image quality, which can have a negative impact on the subsequent image processing and visual effect. Although the existing image denoising algorithms are relatively perfect, their computational efficiency is restricted by the performance of the computer, and the computational process consumes a lot of energy. In this paper, we propose a method for image denoising and recognition based on multi-conductance states of memristor devices. By regulating the evolution of Pt/ZnO/Pt memristor wires, 26 continuous conductance states were obtained. The image feature preservation and noise reduction are realized via the mapping between the conductance state and the image pixel. Furthermore, weight quantization of convolutional neural network is realized based on multi-conductance states. The simulation results show the feasibility of CNN for image denoising and recognition based on multi-conductance states. This method has a certain guiding significance for the construction of high-performance image noise reduction hardware system.

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3