Robust Resistive Switching Constancy and Quantum Conductance in High-k Dielectric-Based Memristor for Neuromorphic Engineering

Author:

Ismail Muhammad,Mahata Chandreswar,Kang Myounggon,Kim Sungjun

Abstract

AbstractFor neuromorphic computing and high-density data storage memory, memristive devices have recently gained a lot of interest. So far, memristive devices have suffered from switching parameter instability, such as distortions in resistance values of low- and high-resistance states (LRSs and HRSs), dispersion in working voltage (set and reset voltages), and a small ratio of high and low resistance, among other issues. In this context, interface engineering is a critical technique for addressing the variation issues that obstruct the use of memristive devices. Herein, we engineered a high band gap, low Gibbs free energy Al2O3interlayer between the HfO2switching layer and the tantalum oxy-nitride electrode (TaN) bottom electrode to operate as an oxygen reservoir, increasing the resistance ratio between HRS and LRS and enabling multilayer data storage. The Pt/HfO2/Al2O3/TaN memristive device demonstrates analog bipolar resistive switching behavior with a potential ratio of HRS and LRS of > 105and the ability to store multi-level data with consistent retention and uniformity. On set and reset voltages, statistical analysis is used; the mean values (µ) of set and reset voltages are determined to be − 2.7 V and + 1.9 V, respectively. There is a repeatable durability over DC 1000 cycles, 105AC cycles, and a retention time of 104 s at room temperature. Quantum conductance was obtained by increasing the reset voltage with step of 0.005 V with delay time of 0.1 s. Memristive device has also displayed synaptic properties like as potentiation/depression and paired-pulse facilitation (PPF). Results show that engineering of interlayer is an effective approach to improve the uniformity, ratio of high and low resistance, and multiple conductance quantization states and paves the way for research into neuromorphic synapses.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3