Tractography in Type 2 Diabetes Mellitus With Subjective Memory Complaints: A Diffusion Tensor Imaging Study

Author:

Wang Jun,Ma Laiyang,Liu Guangyao,Bai Wenjuan,Ai Kai,Zhang Pengfei,Hu Wanjun,Zhang Jing

Abstract

The brain white matter (WM) structural injury caused by type 2 diabetes mellitus (T2DM) has been linked to cognitive impairment. However, the focus was mainly on the mild cognitive impairment (MCI) stage in most previous studies, with little attention made to subjective memory complaints (SMC). The main purpose of the current study was to investigate the characteristics of WM injury in T2DM patients and its correlation with SMC symptoms. In a group of 66 participants (33 HC and 33 T2DM-S), pointwise differences along WM tracts were identified using the automated fiber quantification (AFQ) approach. Then we investigated the utility of DTI properties along major WM tracts as features to distinguish patients with T2DM-S from HC via the support vector machine (SVM). Based on AFQ analysis, 10 primary fiber tracts that represent the subtle alterations of WM in T2DM-S were identified. Lower fractional anisotropy (FA) in the right SLF tract (r = −0.538, p = 0.0013), higher radial diffusivity (RD) in the thalamic radiation (TR) tract (r = 0.433, p = 0.012), and higher mean diffusivity (MD) in the right inferior fronto-occipital fasciculus (IFOF) tract (r = 0.385, p = 0.0029) were significantly associated with a long period of disease. Decreased axial diffusivity (AD) in the left arcuate was associated with HbA1c (r = −0.368, p = 0.049). In addition, we found a significant negative correlation between delayed recall and abnormal MD in the left corticospinal tract (r = −0.546, p = 0.001). The FA of the right SLF tracts and bilateral arcuate can be used to differentiate the T2DM-S and the HC at a high accuracy up to 88.45 and 87.8%, respectively. In conclusion, WM microstructure injury in T2DM may be associated with SMC, and these abnormalities identified by DTI can be used as an effective biomarker.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3