A generalizable deep voxel-guided morphometry algorithm for the detection of subtle lesion dynamics in multiple sclerosis

Author:

Raj Anish,Gass Achim,Eisele Philipp,Dabringhaus Andreas,Kraemer Matthias,Zöllner Frank G.

Abstract

IntroductionMultiple sclerosis (MS) is a chronic neurological disorder characterized by the progressive loss of myelin and axonal structures in the central nervous system. Accurate detection and monitoring of MS-related changes in brain structures are crucial for disease management and treatment evaluation. We propose a deep learning algorithm for creating Voxel-Guided Morphometry (VGM) maps from longitudinal MRI brain volumes for analyzing MS disease activity. Our approach focuses on developing a generalizable model that can effectively be applied to unseen datasets.MethodsLongitudinal MS patient high-resolution 3D T1-weighted follow-up imaging from three different MRI systems were analyzed. We employed a 3D residual U-Net architecture with attention mechanisms. The U-Net serves as the backbone, enabling spatial feature extraction from MRI volumes. Attention mechanisms are integrated to enhance the model's ability to capture relevant information and highlight salient regions. Furthermore, we incorporate image normalization by histogram matching and resampling techniques to improve the networks' ability to generalize to unseen datasets from different MRI systems across imaging centers. This ensures robust performance across diverse data sources.ResultsNumerous experiments were conducted using a dataset of 71 longitudinal MRI brain volumes of MS patients. Our approach demonstrated a significant improvement of 4.3% in mean absolute error (MAE) against the state-of-the-art (SOTA) method. Furthermore, the algorithm's generalizability was evaluated on two unseen datasets (n = 116) with an average improvement of 4.2% in MAE over the SOTA approach.DiscussionResults confirm that the proposed approach is fast and robust and has the potential for broader clinical applicability.

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3