Image registration and appearance adaptation in non-correspondent image regions for new MS lesions detection

Author:

Andresen Julia,Uzunova Hristina,Ehrhardt Jan,Kepp Timo,Handels Heinz

Abstract

Manual detection of newly formed lesions in multiple sclerosis is an important but tedious and difficult task. Several approaches for automating the detection of new lesions have recently been proposed, but they tend to either overestimate the actual amount of new lesions or to miss many lesions. In this paper, an image registration convolutional neural network (CNN) that adapts the baseline image to the follow-up image by spatial deformations and simulation of new lesions is proposed. Simultaneously, segmentations of new lesions are generated, which are shown to reliably estimate the real new lesion load and to separate stable and progressive patients. Several applications of the proposed network emerge: image registration, detection and segmentation of new lesions, and modeling of new MS lesions. The modeled lesions offer the possibility to investigate the intensity profile of new lesions.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference39 articles.

1. Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies;Andresen;Int. J. Comput. Assist. Radiol. Surg,2022

2. “New multiple sclerosis lesion detection with convolutional neural registration networks,”;Andresen,2021

3. “Longitudinal multiple sclerosis lesion segmentation using pre-activation U-Net,”;Ashtari,2021

4. Automated identification of brain new lesions in multiple sclerosis using subtraction images;Battaglini;J. Magn. Reson. Imaging,2014

5. “Learning joint shape and appearance representations with metamorphic auto-encoders,”;Bône,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3