Integration of natural and deep artificial cognitive models in medical images: BERT-based NER and relation extraction for electronic medical records

Author:

Guo Bo,Liu Huaming,Niu Lei

Abstract

IntroductionMedical images and signals are important data sources in the medical field, and they contain key information such as patients' physiology, pathology, and genetics. However, due to the complexity and diversity of medical images and signals, resulting in difficulties in medical knowledge acquisition and decision support.MethodsIn order to solve this problem, this paper proposes an end-to-end framework based on BERT for NER and RE tasks in electronic medical records. Our framework first integrates NER and RE tasks into a unified model, adopting an end-to-end processing manner, which removes the limitation and error propagation of multiple independent steps in traditional methods. Second, by pre-training and fine-tuning the BERT model on large-scale electronic medical record data, we enable the model to obtain rich semantic representation capabilities that adapt to the needs of medical fields and tasks. Finally, through multi-task learning, we enable the model to make full use of the correlation and complementarity between NER and RE tasks, and improve the generalization ability and effect of the model on different data sets.Results and discussionWe conduct experimental evaluation on four electronic medical record datasets, and the model significantly out performs other methods on different datasets in the NER task. In the RE task, the EMLB model also achieved advantages on different data sets, especially in the multi-task learning mode, its performance has been significantly improved, and the ETE and MTL modules performed well in terms of comprehensive precision and recall. Our research provides an innovative solution for medical image and signal data.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference47 articles.

1. Transformer models for text-based emotion detection: a review of BERT-based approaches;Acheampong;Artif. Intell. Rev,2021

2. Performance evaluation of different object detection models for the segmentation of optical cups and discs;Alfonso-Francia;Diagnostics,2022

3. AlmeidaF. XexéoG. Word embeddings: a survey. 2019

4. “SemEval-2016 task 12: clinical tempeval,”;Bethard;Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016),2016

5. Factors affecting cross-hospital exchange of electronic medical records;Chang;Inf. Manag,2009

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clinical Text Analysis with Natural Language Processing: A BERT-based Approach;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

2. Noninvasive prediction of metastasis in esophageal cancer using ensemble-based feature selection;International Journal of System Assurance Engineering and Management;2024-04-15

3. Deep learning-based identification of esophageal cancer subtypes through analysis of high-resolution histopathology images;Frontiers in Molecular Biosciences;2024-03-19

4. Natural Language Processing in Electronic Health Record Mining for Clinical Decision Support;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3