Liquid State Machine on SpiNNaker for Spatio-Temporal Classification Tasks

Author:

Patiño-Saucedo Alberto,Rostro-González Horacio,Serrano-Gotarredona Teresa,Linares-Barranco Bernabé

Abstract

Liquid State Machines (LSMs) are computing reservoirs composed of recurrently connected Spiking Neural Networks which have attracted research interest for their modeling capacity of biological structures and as promising pattern recognition tools suitable for their implementation in neuromorphic processors, benefited from the modest use of computing resources in their training process. However, it has been difficult to optimize LSMs for solving complex tasks such as event-based computer vision and few implementations in large-scale neuromorphic processors have been attempted. In this work, we show that offline-trained LSMs implemented in the SpiNNaker neuromorphic processor are able to classify visual events, achieving state-of-the-art performance in the event-based N-MNIST dataset. The training of the readout layer is performed using a recent adaptation of back-propagation-through-time (BPTT) for SNNs, while the internal weights of the reservoir are kept static. Results show that mapping our LSM from a Deep Learning framework to SpiNNaker does not affect the performance of the classification task. Additionally, we show that weight quantization, which substantially reduces the memory footprint of the LSM, has a small impact on its performance.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference38 articles.

1. A low power, fully event-based gesture recognition system;Amir;Proceedings,2017

2. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations;Benjamin;Proc. IEEE,2014

3. The Heidelberg spiking data sets for the systematic evaluation of Spiking Neural Networks;Cramer;IEEE Transactions on Neural Networks and Learning Systems,2020

4. Loihi: a neuromorphic manycore processor with on-chip learning;Davies;IEEE Micro,2018

5. Advancing neuromorphic computing with Loihi: a survey of results and outlook;Davies;Proc. IEEE,2021

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3