Author:
Segal Galya,Keidar Noam,Lotan Roy Maor,Romano Yaniv,Herskovitz Moshe,Yaniv Yael
Abstract
IntroductionEpilepsy is a neurological disease characterized by sudden, unprovoked seizures. The unexpected nature of epileptic seizures is a major component of the disease burden. Predicting seizure onset and alarming patients may allow timely intervention, which would improve clinical outcomes and patient quality of life. Currently, algorithms aiming to predict seizures suffer from a high false alarm rate, rendering them unsuitable for clinical use.MethodsWe adopted here a risk-controllingprediction calibration method called Learn then Test to reduce false alarm rates of seizure prediction. This method calibrates the output of a “black-box” model to meet a specified false alarm rate requirement. The method was initially validated on synthetic data and subsequently tested on publicly available electroencephalogram (EEG) records from 15 patients with epilepsy by calibrating the outputs of a deep learning model.Results and discussionValidation showed that the calibration method rigorously controlled the false alarm rate at a user-desired level after our adaptation. Real data testing showed an average of 92% reduction in the false alarm rate, at the cost of missing four of nine seizures of six patients. Better-performing prediction models combined with the proposed method may facilitate the clinical use of real-time seizure prediction systems.