Utilizing risk-controlling prediction calibration to reduce false alarm rates in epileptic seizure prediction

Author:

Segal Galya,Keidar Noam,Lotan Roy Maor,Romano Yaniv,Herskovitz Moshe,Yaniv Yael

Abstract

IntroductionEpilepsy is a neurological disease characterized by sudden, unprovoked seizures. The unexpected nature of epileptic seizures is a major component of the disease burden. Predicting seizure onset and alarming patients may allow timely intervention, which would improve clinical outcomes and patient quality of life. Currently, algorithms aiming to predict seizures suffer from a high false alarm rate, rendering them unsuitable for clinical use.MethodsWe adopted here a risk-controllingprediction calibration method called Learn then Test to reduce false alarm rates of seizure prediction. This method calibrates the output of a “black-box” model to meet a specified false alarm rate requirement. The method was initially validated on synthetic data and subsequently tested on publicly available electroencephalogram (EEG) records from 15 patients with epilepsy by calibrating the outputs of a deep learning model.Results and discussionValidation showed that the calibration method rigorously controlled the false alarm rate at a user-desired level after our adaptation. Real data testing showed an average of 92% reduction in the false alarm rate, at the cost of missing four of nine seizures of six patients. Better-performing prediction models combined with the proposed method may facilitate the clinical use of real-time seizure prediction systems.

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3