Distribution-free, Risk-controlling Prediction Sets

Author:

Bates Stephen1,Angelopoulos Anastasios1,Lei Lihua2,Malik Jitendra1,Jordan Michael1

Affiliation:

1. UC Berkeley, Berkeley, CA, USA

2. Stanford University, Stanford, CA, USA

Abstract

While improving prediction accuracy has been the focus of machine learning in recent years, this alone does not suffice for reliable decision-making. Deploying learning systems in consequential settings also requires calibrating and communicating the uncertainty of predictions. To convey instance-wise uncertainty for prediction tasks, we show how to generate set-valued predictions from a black-box predictor that controls the expected loss on future test points at a user-specified level. Our approach provides explicit finite-sample guarantees for any dataset by using a holdout set to calibrate the size of the prediction sets. This framework enables simple, distribution-free, rigorous error control for many tasks, and we demonstrate it in five large-scale machine learning problems: (1) classification problems where some mistakes are more costly than others; (2) multi-label classification, where each observation has multiple associated labels; (3) classification problems where the labels have a hierarchical structure; (4) image segmentation, where we wish to predict a set of pixels containing an object of interest; and (5) protein structure prediction. Last, we discuss extensions to uncertainty quantification for ranking, metric learning, and distributionally robust learning.

Funder

National Science Foundation Graduate Research Fellowship Program and a Berkeley Fellowship

Army Research Office

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference62 articles.

1. The nonexistence of certain statistical procedures in nonparametric problems;Bahadur R. R.;Ann. Math. Statist.,1956

2. Predictive inference with the jackknife+;Barber Rina Foygel;Ann. Statist.,2021

3. On Hoeffding’s inequalities

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Random projection ensemble conformal prediction for high-dimensional classification;Chemometrics and Intelligent Laboratory Systems;2024-10

2. Conformalized Link Prediction on Graph Neural Networks;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Functional protein mining with conformal guarantees;2024-06-28

4. Leveraging conformal prediction to annotate enzyme function space with limited false positives;PLOS Computational Biology;2024-05-29

5. E-DM: Evaluating Diffusion Model by Conformal Prediction;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3