ANK3 Gene Polymorphism Rs10994336 Influences Executive Functions by Modulating Methylation in Patients With Bipolar Disorder

Author:

Tang Lili,Liu Juan,Zhu Yue,Duan Jia,Chen Yifan,Wei Yange,Gong Xiaohong,Wang Fei,Tang Yanqing

Abstract

Background: A large body of evidence suggests that epigenetic modification including DNA methylation plays a critical role in BD's pathogenesis while the identification of methylation quantitative trait loci (meQTLs) shed light on the interpretation of the function of genetic variants in non-coding regions. The intronic single nucleotide polymorphism (SNP) rs10994336 within the ANK3 has emerged as one of the most replicated risk variants for bipolar disorder (BD) in genome-wide association studies. Whether rs10994336 functions as a meQTL to mediate the association between genotype and phenotype remains unclear.Method: A total of 154 patients with BD and 181 healthy controls (HC) were recruited. The genotypes of rs10994336 and methylation levels of CpG sites within ANK3 were tested. Executive functions were assessed using a computerized version of the Wisconsin Card Sorting Test (WCST).Results: Bipolar disorder patients with the risk-T allele of rs10994336 scored lower on tests of executive function compared to homozygous CC carriers, after controlling for age, gender, and education level. No significant difference was found in HC individuals. The risk-T allele is associated with a lower methylation level of CpG site cg02172182 in HC after multiple corrections and replicated in the BD group in the same direction. Further mediation analysis revealed that the cg02172182 methylation significantly mediated the association between the polymorphism rs10994336 and PE index of WCST in patients with BD.Conclusion: Our study suggests that BD-related genetic variant rs10994336 in ANK3 impacts executive functions by modulating ANK3 methylation, supporting the theory that methylation acts as a mediator between genotype and phenotype.

Funder

National Science Fund for Distinguished Young Scholars

Foundation of Liaoning Province Education Administration

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3