Common Cholinergic, Noradrenergic, and Serotonergic Drugs Do Not Block VNS-Mediated Plasticity

Author:

Morrison Robert A.,Abe Stephanie T.,Danaphongse Tanya,Ezhil Vikram,Somaney Armaan,Adcock Katherine S.,Rennaker Robert L.,Kilgard Michael P.,Hays Seth A.

Abstract

Vagus nerve stimulation (VNS) delivered during motor rehabilitation enhances recovery from a wide array of neurological injuries and was recently approved by the U.S. FDA for chronic stroke. The benefits of VNS result from precisely timed engagement of neuromodulatory networks during rehabilitative training, which promotes synaptic plasticity in networks activated by rehabilitation. Previous studies demonstrate that lesions that deplete these neuromodulatory networks block VNS-mediated plasticity and accompanying enhancement of recovery. There is a great deal of interest in determining whether commonly prescribed pharmacological interventions that influence these neuromodulatory networks would similarly impair VNS effects. Here, we sought to directly test the effects of three common pharmaceuticals at clinically relevant doses that target neuromodulatory pathways on VNS-mediated plasticity in rats. To do so, rats were trained on a behavioral task in which jaw movement during chewing was paired with VNS and received daily injections of either oxybutynin, a cholinergic antagonist, prazosin, an adrenergic antagonist, duloxetine, a serotonin-norepinephrine reuptake inhibitor, or saline. After the final behavioral session, intracortical microstimulation (ICMS) was used to evaluate reorganization of motor cortex representations, with area of cortex eliciting jaw movement as the primary outcome. In animals that received control saline injections, VNS paired with training significantly increased the movement representation of the jaw compared to naïve animals, consistent with previous studies. Similarly, none of the drugs tested blocked this VNS-dependent reorganization of motor cortex. The present results provide direct evidence that these common pharmaceuticals, when used at clinically relevant doses, are unlikely to adversely impact the efficacy of VNS therapy.

Funder

National Institutes of Health

Defense Advanced Research Projects Agency

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3