AFENet: Attention Fusion Enhancement Network for Optic Disc Segmentation of Premature Infants

Author:

Peng Yuanyuan,Zhu Weifang,Chen Zhongyue,Shi Fei,Wang Meng,Zhou Yi,Wang Lianyu,Shen Yuhe,Xiang Daoman,Chen Feng,Chen Xinjian

Abstract

Retinopathy of prematurity and ischemic brain injury resulting in periventricular white matter damage are the main causes of visual impairment in premature infants. Accurate optic disc (OD) segmentation has important prognostic significance for the auxiliary diagnosis of the above two diseases of premature infants. Because of the complexity and non-uniform illumination and low contrast between background and the target area of the fundus images, the segmentation of OD for infants is challenging and rarely reported in the literature. In this article, to tackle these problems, we propose a novel attention fusion enhancement network (AFENet) for the accurate segmentation of OD in the fundus images of premature infants by fusing adjacent high-level semantic information and multiscale low-level detailed information from different levels based on encoder–decoder network. Specifically, we first design a dual-scale semantic enhancement (DsSE) module between the encoder and the decoder inspired by self-attention mechanism, which can enhance the semantic contextual information for the decoder by reconstructing skip connection. Then, to reduce the semantic gaps between the high-level and low-level features, a multiscale feature fusion (MsFF) module is developed to fuse multiple features of different levels at the top of encoder by using attention mechanism. Finally, the proposed AFENet was evaluated on the fundus images of preterm infants for OD segmentation, which shows that the proposed two modules are both promising. Based on the baseline (Res34UNet), using DsSE or MsFF module alone can increase Dice similarity coefficients by 1.51 and 1.70%, respectively, whereas the integration of the two modules together can increase 2.11%. Compared with other state-of-the-art segmentation methods, the proposed AFENet achieves a high segmentation performance.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference46 articles.

1. An international classification of retinopathy of prematurity: II. The classification of retinal detachment.;Aaberg;Arch. Ophthalmol.,1987

2. Assistive framework for automatic detection of all the zones in retinopathy of prematurity using deep learning.;Agrawal;J. Digit. Imag.,2021

3. Dense fully convolutional segmentation of the optic disc and cup in color fundus for glaucoma diagnosis.;Al-Bander;Symmetry,2018

4. Ophthalmological sequelae following post-haemorrhagic hydrocephalus.;Algawi;Neuro-ophthalmology,1995

5. Pathological oct retinal layer segmentation using branch residual u-shape networks;Apostolopoulos;International Conference on Medical Image Computing and Computer-Assisted Intervention,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3